| 74 | 0 | 13 |
| Downloads | Citas | Reads |
随着半导体制程特征尺寸缩小至纳米级,前驱体材料中金属杂质控制已成为影响器件性能和良率的决定性因素。阐述了电子化学品前驱体的定义、分类及标准体系现状。系统梳理了固态、液态和气态前驱体的样品前处理技术,针对不同形态前驱体的特殊性质和分析需求,深入分析了电热板湿法消解、微波消解、灰化法、热挥发-酸溶解法、酸雾消解法、石墨熏蒸法、直接酸消解法、减压蒸馏法、溶液吸收法、气体吸收-水解混合法等关键技术的原理、适用条件和技术要点。论述了电感耦合等离子体质谱(ICP-MS)技术在前驱体分析中面临的质谱干扰和基体效应问题,以及高分辨率质谱、反应/碰撞池技术等解决方案。在分析方法验证与质量保证方面,针对前驱体材料缺乏标准参考物质、基体复杂多变、检测限要求极低等挑战,提出结合测量系统分析(MSA)与传统验证方法的综合策略,通过系统评估重复性、再现性和关键变异因素,确保方法的可靠性。随着半导体工艺迈入5 nm及以下节点,前驱体材料金属杂质分析将向前处理与仪器分析技术融合、人工智能应用、在线监测等方向发展。加强方法标准和标准物质研制,建立完善的质量控制体系,对支撑电子化学品前驱体材料产业发展具有重要意义。
Abstract:As semiconductor manufacturing processes advance to the nanometer level,the control of metal impurities in precursor materials has become a critical factor affecting device performance and yield. This article first outlined on the definition,classification,and current status of the standard system of electronic chemical precursors. It then systematically reviewed sample pretreatment techniques for solid,liquid,and gaseous precursors. In view of the unique properties and analytical requirements of different precursors forms,the principles,applicable conditions,and technical key points of various methods including wet digestion with electric heating plates,microwave digestion,ashing,thermal volatilization-acid dissolution,acid mist digestion,graphite fumigation,direct acid digestion,vacuum distillation,solution absorption and gas absorption-hydrolysis mixing were discussed in depth.The article further discussed the challenges in inductively coupled plasma mass spectrometry( ICP-MS) for precursor analysis,including spectral interference and matrix effect,and presents solutions such as high-resolution mass spectrometry and reaction/collision cell technology.In terms of analytical method validation and quality assurance,challenges such as the lack of standard reference materials for precursor materials,complex and variable matrices,and extremely low detection requirements were addressed by proposing a comprehensive strategy combining Measurement System Analysis( MSA) and traditional validation methods.By systematically evaluating repeatability,reproducibility,and key variation factors,the reliability of the method was ensured. As semiconductor nodes move into the 5 nm and sub-5 nm era,the analysis of metal impurities in precursor materials was expected to evolve towards integrated pretreatment and analytical technologies,artificial intelligence applications,and real-time online monitoring. Strengthening the research and development of method standards and reference materials and establishing a complete quality control system are of great significance for supporting the development of the electronic chemical precursor materials industry.
[1]Yu Y Q.Low Temp.Spec.Gases,1991,9(2):9-12.俞云祺.低温与特气,1991,9(2):9-12.
[2]Zhang W J.Guangzhou Chem.Ind.,2015,43(14):19-20.张文娟.广州化工,2015,43(14):19-20.
[3]Yang L L,Hu S M,Gong H P.Fine Spec.Chem.,2023,31(11):1-9.杨亮亮,胡世明,龚慧萍.精细与专用化学品,2023,31(11)1-9.
[4]Yu C,Gu F,Lu Y.Fine Spec.Chem.,2022,30(1):8-11.于宸,顾方,鲁瑛.精细与专用化学品,2022,30(1):8-11.
[5]Cao K W,Zhang J H,Zhao J S. Chin. Stand.,2024,46(S1):151-155.曹可慰,张军华,赵俊莎.中国标准化,2024,46(S1):151-155.
[6]Wu Y R,Zhang J H,Liu Y. Inf. Technol. Stand.,2024,47(10):28-32.吴怡然,张军华,刘宇.信息技术与标准化,2024,47(10):28-32.
[7]Liu Y,Li G E,Chen Y P. Chem. Fiber Text. Technol.,2024,53(11):19-21.刘悦,李国恩,陈亚鹏.化纤与纺织技术,2024,53(11):19-21.
[8]Tan X L,Li Q,Wan F Q. Chin. Stand.,2024,46(S1):219-225.谭小龙,李琴,万富强.中国标准化,2024,46(S1):219-225.
[9]Ren J X,Fang H L,Yang D H. J. Beijing Inst. Graphic Commun.,2024,32(3):67-72.任家轩,方弘历,杨斗豪.北京印刷学院学报,2024,32(3):67-72.
[10]Jin R H,Yuan X,Li Q S. Sci. Chin. Chem.,2023,53(10):1 853-1 865.靳瑞华,袁星,李群生.中国科学:化学,2023,53(10):1 853-1 865.
[11]Jiang Z K,Li H,Hua C.Mod.Chem.Ind.,2022,42(12):13-18.姜占坤,李海,华超.现代化工,2022,42(12):13-18.
[12]IEEE.Internatioal Roadmap for Devices and Systemstm2023 Update Yield Enhancement. New York:Institute of Electrical and Electronics Engineers,Incorporated,2023.
[13]Chen Y S.Low Temp.Spec.Gases,2022,40(3):6-8.陈艳珊.低温与特气,2022,40(3):6-8.
[14]Chang Y,Gao Y M,Hao P,Wang Y,Li G Y,Zhang A Y,Li C H.Chin.J.Inorg.Anal.Chem.,2025,15(3):382-388.常燕,高一鸣,郝萍,王勇,李更银,张安于,李春华.中国无机分析化学,2025,15(3):382-388.
[15]Xia Z Y,Hou J X,Yang Z. Appl. Chem. Ind.,2024,53(12):2 919-2 923; 2 929.夏致远,侯建鑫,杨着.应用化工,2024,53(12):2 919-2 923; 2 929.
[16]GB/T 4754—2017.Industrial Classification for National Economic Activities,2017.GB/T 4754—2017.国民经济行业分类,2017.
[17]Anonymous.New material industry,2017,(3):72-73.佚名.新材料产业,2017,(3):72-73.
[18]Li S,Lin Y,Wu Y.Ceram.Int.,2019,45(16):21 015-21 022.
[19]Guo D J,Chang Z. Mod. Ind. Econ. Inf.,2021,11(6):135-136.郭帝江,常志.现代工业经济和信息化,2021,11(6):135-136.
[20]Zhao X J,Zhang P,Wang Y C.Chlor-Alkali.Ind.,2018,54(6):26-27; 39.赵学军,张鹏,王玉成.氯碱工业,2018,54(6):26-27;39.
[21]Gao Z S,Yu Y,Xie S P.Shandong Chem. Ind.,2018,47(20):102-103; 105.高召帅,于跃,谢世鹏.山东化工,2018,47(20):102-103; 105.
[22]Zhang X H.Chin.Insp.Test.,2018,26(6):7-8; 54.张啸虎.中国检验检测,2018,26(6):7-8; 54.
[23]Sepp?l?S,Niinist?J,Mattinen M. Thin. Solid Films,2018,660:199-206.
[24]Alvarez J D,Spiegelman J,Heinlein E,Ramos C,Holmes R J,Shamsi Z. Solid State Phenom.,2013,195:25-29.
[25]Norton E T,Amato-wierda C. Chem. Mater.,2001,13(12):4 655-4 660.
[26]Zhang D H,Tang A J,Wei D J.Appl.Chem.Ind.,2019,48(2):486-489; 493.张丹辉,唐安江,韦德举.应用化工,2019,48(2):486-489; 493.
[27]SEMI C25. Specifications and Guidelines for Dichloromethane,2006-02.
[28]SEMI C70. Specifications and Guidelines for Tungsten Hexafluoride,2016-11.
[29]SEMI C71.Specifications and Guidelines for Boron Trichloride,2021-04.
[30]SEMI C67.Guide for Hafnium Amides,2017-03.
[31]SEMI C3. 27. Specifications and Guidelines for Boron Trifluoride in Cylinders,99.0%quality,2018-01.
[32]SEMI C3.47.Specifications and Guidelines for Hydrogen Bromide,2018-02.
[33]SEMI C3.39.Specifications for Nitrogen Trifluoride,99.98%,2018-01.
[34]SEMI C3. 8. Specifications and Guidelines for Silane,2011-09.
[35]SEMI C3.55. Specifications and Guidelines for Silane,2018-02.
[36]SEMI C3.51-1101.Specifications for Boron Trichloride,99.98%Quality,2011-11.
[37]GB/T 42720—2023.Electronic Special Gas Hexachloroethylsilane,2023-01-01.GB/T 42720—2023.电子特气六氯乙硅烷,2023-01-01.
[38]GB/T 36656—2018. Electronic Grade Triethylgallium,2018.GB/T 36656—2018.电子级三乙基镓,2018.
[39]GB/T 37007—2018.Electronic Grade Trimethylgallium,2018.GB/T 37007—2018.电子级三甲基镓,2018.
[40]GB/T 36653—2018. Electronic Grade Trimethylaluminum,2018.GB/T 36653—2018.电子级三甲基铝,2018.
[41]GB/T 38866—2020.Dichlorosilane for Electronic Industry,2020.GB/T 38866—2020.电子工业用二氯硅烷,2020.
[42]GB/T 15909—2017. Gases for Electronic Industry Silane,2017.GB/T 15909—2017.电子工业用气体硅烷,2017.
[43]GB/T 37030—2018.Electronic Grade Trimethylindium,2018.GB/T 37030—2018.电子级三甲基铟,2018.
[44]Zhang Y,Pan Z B,Jiao P C. J. Instrum. Anal.,2019,38(3):307-311.张衍,潘忠奔,焦鹏冲.分析测试学报,2019,38(3):307-311.
[45]GB/T 38867—2020.Silicon Tetrachloride for Electronic Industry,2020.GB/T 38867—2020.电子工业用四氯化硅,2020.
[46]Li C H,Chen L M.Shanghai Metrol.Test.,2013,40(2):32-34.李春华,陈黎明.上海计量测试,2013,40(2):32-34.
[47]Wan Y,Xiao J,Yan D Z.J.Cent.South Univ.(Sci.Technol.),2020,51(12):3 341-3 348.万烨,肖劲,严大洲.中南大学学报(自然科学版),2020,51(12):3 341-3 348.
[48]Jiang S B.Study on Optimization of Detection Methods for Impurity Elements in High-Purity Trichlorosilane.Tianjin:Tianjin University,2016.姜士兵.高纯三氯氢硅中杂质元素检测方法优化的研究.天津:天津大学,2016.
[49]Zhao Y,Peng S J,Liu Y X. Chin. J. Rare Met.,1994,18(3):237-240.赵毅,彭淑娟,刘玉漩.稀有金属,1994,18(3):237-240.
[50]Wang C M,Zhang S Z,Wu Q.Semicond.Technol.,1997,22(4):53-55.王春梅,张淑珍,吴琼.半导体技术,1997,22(4):53-55.
[51]Yu L,Lv B Y,Qiu L W. Chin. J. Anal. Chem.,2025,28(1):42-45.虞磊,吕宝源,裘丽雯.分析化学,2025,28(1):42-45.
[52]Wang Y C,Meng B B,Zhu X T,Song G L,Wang Y J.Fujian Anal.Test.,2023,32(2):40-43; 49.王运超,蒙兵兵,朱雪铜,宋光林,王艳娇.福建分析测试,2023,32(2):40-43; 49.
[53]Robertson J,Wallace R M.Mater.Sci.Eng.R,2015,88:1-41.
[54]Clancy P,Milstein L S,Gotts H E.ECS Trans.,2010,28(1):349-359.
[55]Zhang Y,Pan Z,Jiao P.At.Spectrosc.,2019,40(5):167-172.
[56]U.S. Environmental Protection Agency. Definition and Procedure for the Determination of the Method Detection Limit,Revision 2. Washington,DC:U. S. Environmental Protection Agency,2016.
[57]Al-qudah S K.J.Manage.Eng.Integr.,2017,10(2):68-80.
[58]GB/T 39486—2020.General Rules for Inductively Coupled Plasma Mass Spectrometry Analysis of Chemical Reagents,2020.GB/T 39486—2020.化学试剂电感耦合等离子体质谱分析方法通则,2020.
[59]Burdick R K,Borror C M. J. Qual. Technol.,2003,35(4):342-354.
[60]Senvar O,Firat S U O. Int. J. Met. Qual. Eng.,2010,1(2):121-127.
Basic Information:
DOI:10.13822/j.cnki.hxsj.2025.0118
China Classification Code:O657.63;TN40
Citation Information:
[1]李更银,史泽远,李春华,等.电子化学品前驱体材料中金属杂质分析技术研究进展[J].化学试剂,2025,47(09):29-40.DOI:10.13822/j.cnki.hxsj.2025.0118.
Fund Information:
国家市场监督管理总局科技计划项目(2023MK029)